

In this <u>video</u>, the T-Stub definition is introduced according to Eurocode 1993-1-8. The following topics are covered:

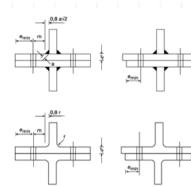
- a) Equivalent T-Stub.
- b) Different failure modes.
- c) Prying force and its definition.
- d) Stress area of a bolt.
- e) Individual and group bolt rows in general.
- f) The effective length of a T-Stub for column flange.

6.2.4 Equivalent T-stub in tension

6.2.4.1 General

- In bolted connections an equivalent T-stub in tension may be used to model the design resistance of the following basic components:
 - column flange in bending;
 - end-plate in bending;
 - flange cleat in bending;
 - base plate in bending under tension.
- (2) Methods for modelling these basic components as equivalent T-stub flanges, including the values to be used for e_{min}, t_{eff} and m, are given in 6.2.6.
- (3) The possible modes of failure of the flange of an equivalent T-stub may be assumed to be similar to those expected to occur in the basic component that it represents.
- (4) The total effective length $\sum t_{eff}$ of an equivalent T-stub, see Figure 6.2, should be such that the design resistance of its flange is equivalent to that of the basic joint component that it represents.

NOTE: The effective length of an equivalent T-stub is a notional length and does not necessarily correspond to the physical length of the basic joint component that it represents.

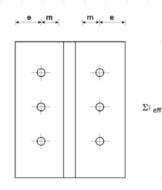

6.2.4 Equivalent T-stub in tension

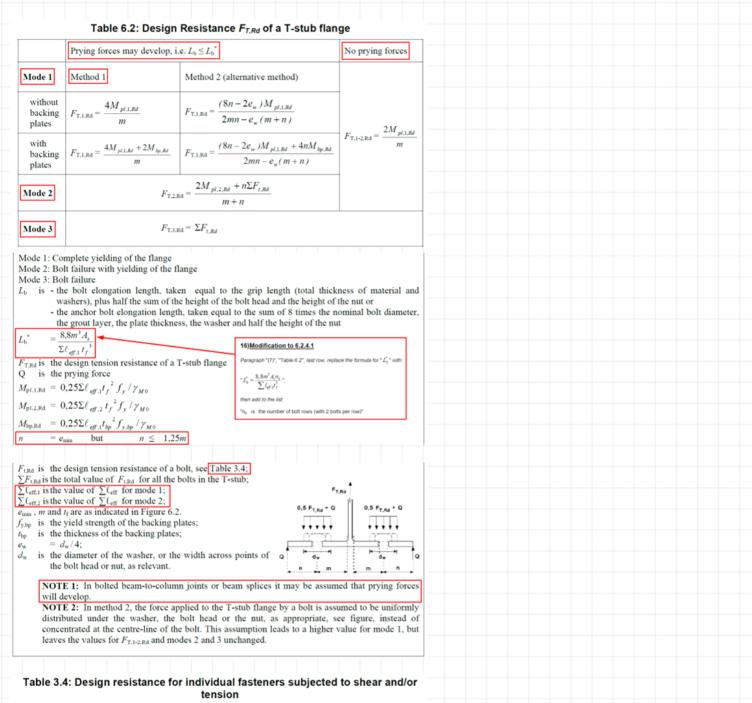
6.2.4.1 General

(5) The design tension resistance of a T-stub flange should be determined from Table 6.2.

NOTE: Prying effects are implicitly taken into account when determining the design tension resistance according to Table 6.2.

- (6) In cases where prying forces may develop, see Table 6.2, the design tension resistance of a T-stub flange F_{T,Rd} should be taken as the smallest value for the three possible failure modes 1, 2 and 3.
- (7) In cases where prying forces may not develop the design tension resistance of a T-stub flange $F_{T,Rd}$ should be taken as the smallest value for the two possible failure modes according to Table 6.2.




Figure 6.2: Dimensions of an equivalent T-stub flange

SHAT (

SHH (

_	Failure mode	Bolts	Rivets
	Tension resistance 2)	$F_{\text{LRd}} = \frac{k_2 f_{ub} A_x}{\gamma_{M2}}$ where $k_2 = 0.63$ for countersunk bolt,	$F_{\rm LRd} = \frac{0.6 f_{ur} A_0}{\gamma_{M2}}$
		otherwise $k_2 = 0.9$.	

Proof Load

Proof load is defined as the maximum tensile force that can be applied to a bolt that will not result in plastic deformation. A material must remain in its elastic region when loaded up to its proof load typically between 85-95% of the yield strength. Acceptable clamp load is typically 75% of proof load.

_	Pitch P (mm)	Nominal Stress Area A _{s.nom} (mm ²) (n2)	Property Class								
Thread d			4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9
(mm)			Proof Load - Fp (N) (Agr. 80)								
M3	0.50	5.03	1130	1560	1410	1910	2210	2920	3270	4180	4880
M3.5	0.60	6.78	1530	2100	1900	2580	2980	3940	4410	5630	6580
M4	0.70	8.78	1980	2770	2460	3340	3860	5100	5710	7290	8520
M5	0.80	14.2	3200	4400	3980	5400	6250	8230	9230	11800	1380
M6	1.00	20.1	4520	6230	5630	7640	8840	11600	13100	16700	1950
M7	1.00	28.9	6500	8920	8090	11000	12700	16800	18800	24000	2800
M8	1.25	36.6	8240	11400	10200	13900	16100	21200	23800	30400	3550
M10	1.50	58.0	13000	18000	16200	22000	25500	33700	37700	48100	5630
M12	1.75	84.3	19000	26100	23600	32000	37100	48900 ^d	54800	70000	8180
M14	2.00	115	25900	35600	32200	43700	50600	66700 ^{d)}	74800	95500	11200
M16	2.00	157	35300	48700	44000	59700	69100	91000 ^{d)}	102000	130000	15200
M18	2.50	192	43200	59500	53800	73000	84500	115000		159000	18600
M20	2.50	245	55100	76000	68600	93100	108000	147000		203000	23800
M22	2.50	303	68200	93900	84800	115000	133000	182000		252000	29400
M24	3.00	353	79400	109000	98800	134000	155000	212000		293000	34200
M27	3.00	459	103000	142000	128000	174000	202000	275000		381000	44500
M30	3.50	561	126000	174000	157000	213000	247000	337000		466000	54400
M33	3.50	694	156000	215000	194000	264000	305000	416000		570000	67300
M36	4.00	817	184000	253000	229000	310000	359000	490000		678000	79200
M39	4.00	976	220000	303000	273000	371000	429000	586000		810000	94700

engineeringtoolbox.com/metric-bolts-minimum-ultimate-tensile-proof-loads-d_2026.html

6.2.4.2 Individual bolt-rows, bolt-groups and groups of bolt-rows

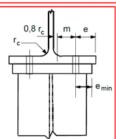
- (1) Although in an actual T-stub flange the forces at each bolt-row are generally equal, when an equivalent T-stub flange is used to model a basic component listed in 6.2.4.1(1), allowance should be made for the different in forces at each bolt-row.
- (2) When using the equivalent T-stub approach to model a group of bolt rows it may be necessary to divide the group into separate bolt-rows and use an equivalent T-stub to model each separate bolt-row.
- (3) When using the T-stub approach to model a group of bolt rows the following conditions should be satisfied:
 - a) the force at each bolt-row should not exceed the design resistance determined considering only that individual bolt-row;
 - b) the total force on each group of bolt-rows, comprising two or more adjacent bolt-rows within the same bolt-group, should not exceed the design resistance of that group of bolt-rows.
- (4) When determining the design tension resistance of a basic component represented by an equivalent T-stub flange, the following parameters should be calculated:
 - a) the design resistance of an individual bolt-row, determined considering only that bolt-row;
 - b) the contribution of each bolt-row to the design resistance of two or more adjacent bolt-rows within a bolt-group, determined considering only those bolt-rows.
- (5) In the case of an individual bolt-row ∑ℓ_{eff} should be taken as equal to the effective length ℓ_{eff} tabulated in 6.2.6 for that bolt-row taken as an individual bolt-row.
- (6) In the case of a group of bolt-rows ∑ℓ_{eff} should be taken as the sum of the effective lengths ℓ_{eff} tabulated in 6.2.6 for each relevant bolt-row taken as part of a bolt-group.

SHH C

SHH (

10 31

0


0


6.2.6.4 Column flange in tranverse bending

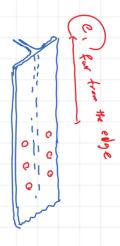
6.2.6.4.1 Unstiffened column flange, bolted connection

- (1) The design resistance and failure mode of an unstiffened column flange in tranverse bending, together with the associated bolts in tension, should be taken as similar to those of an equivalent T-stub flange, see 6.2.4, for both:
 - each individual bolt-row required to resist tension;
 - each group of bolt-rows required to resist tension.
- (2) The dimensions e_{\min} and *m* for use in 6.2.4 should be determined from Figure 6.8.
- (3) The effective length of equivalent T-stub flange should be determined for the individual bolt-rows and the bolt-group in accordance with 6.2.4.2 from the values given for each bolt-row in Table 6.4.

6.2.6.4 Column flange in tranverse bending

a) Welded end-plate narrower than column flange.

Figure 6.8: Definitions of e, e_{min}, r_c and m

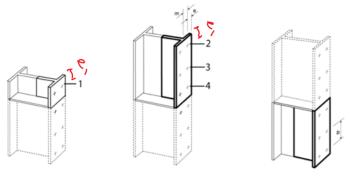

Table 6.4: Effective lengths for an unstiffened column flange

Bolt-row	Bolt-row considered individually	ed	Bolt-row considered as part of a group of bolt-rows		
location	Circular patterns { _{eff,cp}	Non-circular patterns ℓ _{eff.nc}	Circular patterns ℓ _{eff,sp}	Non-circular patterns ℓ _{eff,nc}	
Inner bolt-row	2πm	4m + 1,25e	2p	p	
End bolt-row	The smaller of: $2\pi m$ $\pi m + 2e_1$	The smaller of: 4m + 1,25e $2m + 0,625e + e_1$	The smaller of: $\pi m + p$ $2e_1 + p$	The smaller of: 2m + 0.625e + 0.5p $e_1 + 0.5p$	
Mode 1:	$\ell_{eff,1} \ = \ \ell_{eff,nc} but \ell_{eff,1} \ \le \ \ell_{eff,cp}$		$\textstyle \sum \ell_{eff,1} = \sum \ell_{eff,nc} but \sum \ell_{eff,1} \le \sum \ell_{eff,cp}$		
Mode 2:	$\ell_{eff,2} = \ell_{eff,nc}$		$\sum \ell_{eff,2} = \sum \ell_{eff,nc}$		

19)Modification to 6.2.6.4.1

Paragraph "(3)", "Table 6.4", add a row at the bottom of the table containing the following paragraph:

"e1 is the distance from the centre of the fasteners in the end row to the adjacent free end of the column flange measured in the direction of the axis of the column profile (see row 1 and row 2 in Figure 6.9).".


0

0

1111

SHH C

- End bolt row adjacent to a stiffener
 End bolt row
 Inner bolt row
- 4 Bolt row adjacent to a stiffener

Figure 6.9: Modelling a stiffened column flange as separate T-stubs

