

For a given rectangular concrete beam, according to Eurocode 1992-1-1:

a) Determine the procedure for calculating the resistance bending moment

A concrete rectangular cross-section, 300x500, is made of C30/37 and reinforced by B500 steel. Assume the stirrup is T10 and the required nominal cover is 35mm:

- b) With 4T20, determine the bending moment resistance.
- c) With 4T25, determine the bending moment resistance.
- d) With 4T32, determine the bending moment resistance.
- e) Compare the steel percentage increase results and the corresponding bending moment increase.

PS. Neglect the effect of compressive steel.

Dimensions are in mm. A positive bending moment is assumed to be applied.

SHH (

idth of the beam	b := 300 mm
eight of the beam	h:= 500 mm
ominal cover	c _{nom} :=35 mm
einforcement Diameter	$(\phi_{a} = 20 \text{ mm})$
tirrup Diameter	$\phi_{sw} \coloneqq 10 \ mm$
umber of Reinforcement	<u>n_s:=4</u>
oncrete Compressive Strength	$f_{ck} \coloneqq 30 \ MPa$
Bending Moment Resistance	$M_{Rd} \coloneqq \mu \cdot f_{cd} \cdot b \cdot d^2 = 213 \ kN \cdot m$
Tensile Reinforcement Area	$A_s = 1257 \text{ mm}^2$
idth of the beam	b≔300 mm
right of the beam	h= 500 mm
ominal cover	c _{nom} :=35 mm
inforcement Diameter	$\phi_s = 25 \text{ mm}$
rrup Diameter	$\phi_{sw} \coloneqq 10 \ mm$
umber of Reinforcement	$n_s = 4$
oncrete Compressive Strength	$f_{ck} \coloneqq 30 \ MPa$
Bending Moment Resistance	$M_{a} = u \cdot f \cdot h \cdot d^2 = 304 \ kN \cdot m$
Tensila Bainforcement Area	$A_{Rd} = \mu^2 f_{cd} + 0.4 = 504 \text{ km}^2$
Tensne Reinforcement Area	A _s =1903 mm
idth of the beam	b:= 300 mm
eight of the beam	h:= 500 mm
minal cover	c _{nom} := 35 mm
inforcement Diameter	(9 (5 2) - (\$\$ = 32 mm) 72 3 69
rrup Diameter	$\phi_{sw} \coloneqq 10 \ mm$
umber of Reinforcement	n _s :=4
	$f_{ck} = 30 MPa$
ncrete Compressive Strength	
Bending Moment Resistance	$M_{Rd} \coloneqq \mu \cdot f_{cd} \cdot b \cdot d^2 = 361 \ kN \cdot m$

