

For a given rectangular concrete beam, according to Eurocode 1992-1-1:

a) Derive the procedure of determining the required reinforcement.

A concrete rectangular cross-section, 300x500, is made of C30/37 and reinforced by B500 steel. Assume the stirrup is T10 and the required nominal cover is 35mm:

- b) If the available reinforcement is T20, how many reinforcements are required to withstand 250kN.m bending moment?
- c) Determine the stress in reinforcements based on your design.

PS. Neglect the effect of compressive steel.

Dimensions are in mm. The cross-section is under a positive bending moment. The sketch is schematic and does not necessarily means that 4T20 is sufficient.

SHAH ($M = \mathcal{H} \cdot f_{e_J} \cdot b \cdot J^2$ $M_{RJ} = \mathcal{H} \cdot f_{RJ} \cdot b$ $M_{RJ} = \beta \left(1 - \frac{\beta_{1}}{2}\right)$ $\omega = \frac{A_s}{b \cdot d} \cdot \frac{f_{td}}{f_{cd}}, \quad \beta_{bd} = 0.493 \quad (f_{yk} = 5 - n_j) \cdot \eta$ MRJ, = M. f. b. J² $\int_{a} \mathcal{H}_{bd} = \beta_{bd} \left(1 - \frac{\beta_{bd}}{2} \right) = 0.493 \left(1 - \frac{0.493}{2} \right) = 0.372$ MEd = 250 ka.m < Midda = 300 ka.m - Tensile reinforcement would be enough. using better concrete class $M_{\text{Ed}} = 4r \cdot kd \cdot m \rightarrow M_{\text{Rd}-c} = 3r \cdot kd \cdot m \rightarrow \{$ $\begin{cases} increasing beam timensions <math>\rightarrow fb \\ we can check if by \end{cases}$ (reasonable compressive reinforcement the beam can take Med Determine the M (Maximum bending moment capacity of Rdic ancrete beam without compressive reinforce ment) (3) If Made Made Compressive reinforcement is not needed. $M = \beta (1 - \beta_2) = \beta^2 - 2\beta + 2M = \cdot$ $M = \beta - \beta_2^2$ $2M = 2\beta - \beta^2$ $\beta = \frac{2 \pm \sqrt{4 - 8M}}{2} = \frac{2 \pm 2\sqrt{1 - 2M}}{2} = 1 \pm \sqrt{1 - 2M} = 3$ $\beta = \frac{A_s}{b \cdot d} \cdot \frac{f_{7J}}{f_{cJ}} = \frac{X}{d \cdot x_c} \cdot \frac{\lambda x}{d} \quad C_c = f_{cJ} \cdot b \cdot \lambda x \rightarrow f_{cJ} \cdot b = \frac{C_c}{\lambda x}$ 🌒 Shah.fi

Asmin = max {0.26 fetm ,0.0-13 }. b. d

					:	Stren	gth cla	sses	for co	ncrete	•					Analytical relation / Explanation
f _{ck} (Mi	Pa) 12	1	6	20	25	30	35	40	45	50	55	60	70	80	90	
f _{ck,cube} (MPa	, 15)	2)	25	30	37	45	50	55	60	67	75	85	95	105	
f _{cm} (MPa	20 a)	2	1	28	33	38	43	48	53	58	63	68	78	88	98	$f_{cm} = f_{ck} + 8(MPa)$
f _{ctm} (MPa	1,6 a)	5 1,	9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0	f_{ctm} =0,30× f_{ctc} ^(2/3) ≤C50/60 f_{ctm} =2,12·In(1+(f_{cm} /10)) > C50/60
	_		_													

A = max & Asurequired , Asure ?

€=?, n=.-

Width of the beem	h = 200 mm
width of the beam	0 := 300 mm
Height of the beam	<i>h</i> := 500 <i>mm</i>
Nominal cover	c _{nom} :=35 mm
Reinforcement Diameter	$\phi_s \coloneqq 20 mm$
Stirrup Diameter	$\phi_{sw} \coloneqq 10 \ mm$
Design Bending Moment	$M_{Ed}{\coloneqq}250~\textit{kN}{\cdot}\textit{m}$
Concrete Compressive Strength	$f_{ck} \coloneqq 30 \ MPa$

Status₁ = "Compressive Reinforcement is not Required"

 $A_s = 1520 mm^2$ Required Reinforcement (Number)

 $n_{s,rqd} = 4.84$

 $n \coloneqq 5$

🌒 Shah.fi