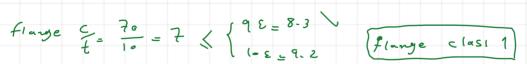
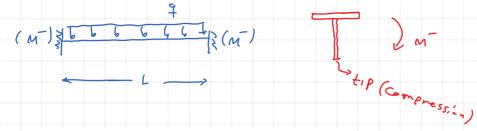
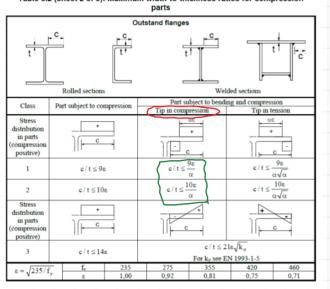
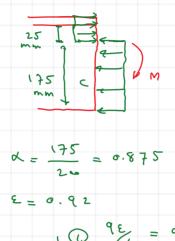
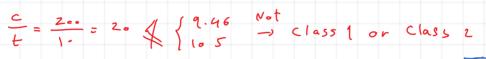
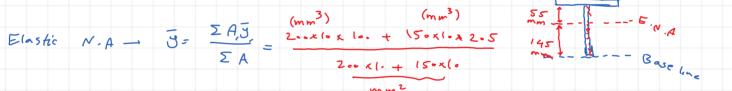

In the previous <u>video</u>, we learned how to use the tables provided in Eurocode 1993-1-1 to choose appropriate tables based on loading and other conditions. This video will teach the classification of asymmetric sections subjected to partial bending or partial compression with helpful examples.

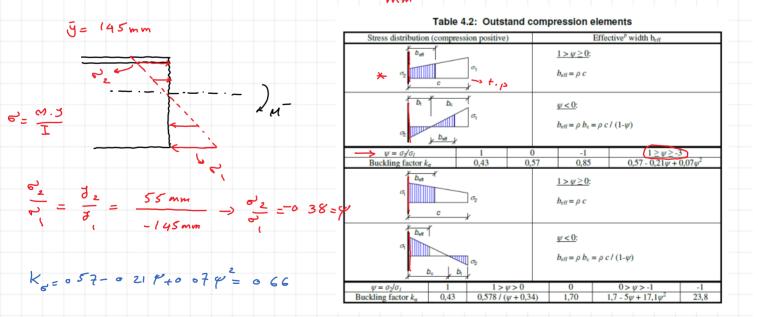


ΣA_{cop} = ΣA_{Bot} → (Sox10+ Jx10 = (2...-y) x10 -1 y = 25mm

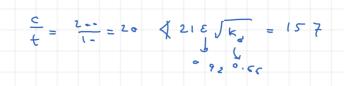




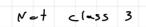

Table 5.2 (sheet 2 of 3): Maximum width-to-thickness ratios for compression




🌒 Shah.fi

$$l_{1}$$
 l_{1} l_{1} l_{2} = $q. 46$
 l_{2} l_{2} l_{2} l_{2} l_{3} l_{4} = l_{3} . S





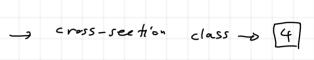

SHH

Table 5.2 (sheet 2 of 3): Maximum width-to-thickness ratios for compression parts

parts						
Outstand flanges						
		t !				
	Rolled sections	5	Welded sections			
Class	Part subject to compression		Part subject to bendi Tip in compression		ing and compression Tip in tension	
Stress distribution in parts (compression positive)	+][]+ •					
1	$c/t\leq9\epsilon$		$c/t \le \frac{9\epsilon}{\alpha}$		$c/t \le \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$	
2	$c/t\leq \!10\epsilon$		$c/t \le \frac{10\epsilon}{\alpha}$		$c/t \le \frac{10\varepsilon}{\alpha\sqrt{\alpha}}$	
Stress distribution in parts (compression positive)	+][
3	$c/t\leq 14\epsilon$		$c/t \le 21\epsilon \sqrt{k_{\sigma}}$ For k_{σ} see EN 1993-1-5			
$\varepsilon = \sqrt{235/f}$	y ε	235 1,00	275 0,92	355 0,81	420 0,75	460 0,71

