
Four rigid bars form a compressive element under applied compressive load at point B. It is assumed that the bars are hinged and connected at their intersection. At one end, the element is supported by a hinge, and at the other end, point B, the element is supported by a roller. The system is assumed to be a 2D structure. At the intersections, there are three rotational springs with a spring coefficient of k. Each rigid bar is the length of *l*.

- a) Determine the total potential energy of the system.
- b) Determine the buckling loads.
- c) Determine the buckling shape modes.
- d) Assume the rotational spring coefficient is 2000kN.m/rad and determine the buckling loads numerically.
- e) Model the system in FEM software and compare your results.

$$A = P$$

$$A =$$

$$|\Theta| = \Theta_1 - \Theta_2$$

$$\sqrt{1 - \frac{P}{L}} = -\frac{P}{L} \left(\delta_1^2 + \delta_2^2 + \delta_3^2 - \delta_1 \delta_2 - \delta_2 \delta_3 \right)$$

$$W = \sum_{i=1}^{n} K \cdot \theta^{2} = \frac{1}{2} K \left((\theta_{1} - \theta_{2})^{2} + (\theta_{2} + \theta_{3})^{2} + (\theta_{3} - \theta_{4})^{2} \right) \quad |\theta| = \theta_{3} - \theta_{4}$$

$$\theta_1 = \frac{\delta_1}{L}$$
, $\theta_2 = \frac{\delta_2 - \delta_1}{L}$, $\theta_3 = \frac{\delta_2 - \delta_3}{L}$, $\theta_4 = \frac{\delta_3}{L}$

$$W = \frac{1}{2} k \left(\left(\frac{2\delta_1 - \delta_2}{L} \right)^2 + \left(\frac{2\delta_2 - \delta_1 - \delta_3}{L} \right)^2 + \left(\frac{\delta_2 - 2\delta_3}{L} \right)^2 \right)$$

$$\boldsymbol{\Pi}\left(p\,,k\,,l\,,\boldsymbol{\delta}_{1}\,,\boldsymbol{\delta}_{2}\,,\boldsymbol{\delta}_{3}\right)\coloneqq W\left(k\,,l\,,\boldsymbol{\delta}_{1}\,,\boldsymbol{\delta}_{2}\,,\boldsymbol{\delta}_{3}\right)+V\left(p\,,l\,,\boldsymbol{\delta}_{1}\,,\boldsymbol{\delta}_{2}\,,\boldsymbol{\delta}_{3}\right)$$

$$\frac{\partial \pi}{\partial \delta_1} = 0$$
, $\frac{\partial \pi}{\partial \delta_2} = 0$, $\frac{\partial \pi}{\partial \delta_3} = 0$

$$\frac{\mathrm{d}}{\mathrm{d}\delta_{1}}\Pi\left(p,k,l,\delta_{1},\delta_{2},\delta_{3}\right) \xrightarrow{expand} \frac{\delta_{2} \cdot p}{l} \xrightarrow{2 \cdot \delta_{1} \cdot p} + \frac{\delta_{3} \cdot k}{l^{2}} \xrightarrow{4 \cdot \delta_{2} \cdot k} + \frac{5 \cdot \delta_{1} \cdot k}{l^{2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}\delta_{2}}\Pi\left(p,k,l,\delta_{1},\delta_{2},\delta_{3}\right) \xrightarrow{expand} \frac{\delta_{3} \cdot p}{l} \xrightarrow{2 \cdot \delta_{2} \cdot p} + \frac{\delta_{1} \cdot p}{l} \xrightarrow{4 \cdot \delta_{3} \cdot k} + \frac{6 \cdot \delta_{2} \cdot k}{l^{2}} \xrightarrow{4 \cdot \delta_{1} \cdot k}$$

$$\frac{\mathrm{d}}{\mathrm{d}\delta_{3}}\Pi\left(p,k,l,\delta_{1},\delta_{2},\delta_{3}\right) \xrightarrow{expand} \xrightarrow{-2 \cdot \delta_{3} \cdot p} + \frac{\delta_{2} \cdot p}{l} + \frac{5 \cdot \delta_{3} \cdot k}{l^{2}} \xrightarrow{-4 \cdot \delta_{2} \cdot k} + \frac{\delta_{1} \cdot k}{l^{2}}$$

$$\xrightarrow{l} \xrightarrow{\delta_2 \cdot p} - \xrightarrow{2 \cdot \delta_1 \cdot p} + \xrightarrow{\delta_3 \cdot k} \xrightarrow{l^2} - \xrightarrow{k \cdot \delta_2 \cdot k} + \xrightarrow{5 \cdot \delta_1 \cdot k} \xrightarrow{l^2}$$

$$\xrightarrow{l} \underbrace{\delta_3 \cdot p}_{l} - \underbrace{2 \cdot \delta_2 \cdot p}_{l} + \underbrace{\delta_1 \cdot p}_{l} - \underbrace{4 \cdot \delta_3 \cdot k}_{l^2} + \underbrace{6 \cdot \delta_2 \cdot k}_{l^2} - \underbrace{4 \cdot \delta_1 \cdot k}_{k^2}$$

$$\xrightarrow{l} - \underbrace{2 \cdot \delta_3 \cdot p}_{l} + \underbrace{\delta_2 \cdot p}_{l} + \underbrace{5 \cdot \delta_3 \cdot k}_{l^2} - \underbrace{4 \cdot \delta_2 \cdot k}_{l^2} + \underbrace{\delta_1 \cdot k}_{l^2}$$

$$\int \left(\frac{5k}{L^2} - \frac{2p}{L}\right) \delta_1 + \left(-\frac{4k}{L^2} + \frac{p}{L}\right) \delta_2 + \frac{k}{L^2} \delta_3 = 0$$

$$\left(-\frac{4k}{L^{2}} + \frac{p}{L}\right) \delta_{i} + \left(\frac{6k}{L^{2}} - \frac{2p}{L}\right) \delta_{2} + \left(-\frac{4k}{L^{2}} + \frac{p}{L}\right) \delta_{3} = 0$$

$$\frac{k}{L^2} \delta_1 + \left(-\frac{4k}{L^2} + \frac{P}{L}\right) \delta_2 + \left(\frac{5k}{L^2} - \frac{2P}{L}\right) \delta_3 = 0$$

$$A = \begin{bmatrix} \frac{5k}{L^2} - \frac{2P}{L} & -\frac{4k}{L^2} + \frac{P}{L} & \frac{k}{L^2} \\ -\frac{4k}{L^2} + \frac{P}{L} & \frac{6k}{L^2} - \frac{2P}{L} & -\frac{4k}{L^2} + \frac{P}{L} \\ \frac{k}{L^2} & -\frac{4k}{L^2} + \frac{P}{L} & \frac{5k}{L^2} - \frac{2P}{L} \end{bmatrix}$$

$$X = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix}, \quad A. \quad X = \overline{o}$$

$$X = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix}, \quad A \cdot X = \overline{0}$$

$$\det(A(p,k,l)) = 0 \xrightarrow{substitute, (k^2 \cdot l^2)^{0.5} = k \cdot l}$$

$$\begin{array}{c|c}
\hline
2.0 \cdot k \\
\hline
l \\
3.4142135623730950488 \cdot k \\
\hline
l \\
0.5857864376269049512 \cdot k
\end{array}$$

$$\begin{bmatrix} 3.8284271247461900976 \cdot k & -3.4142135623730950488 \cdot k & k \\ l^2 & l^2 & \\ -3.4142135623730950488 \cdot k & 4.8284271247461900976 \cdot k & -3.4142135623730950488 \cdot k \\ l^2 & l^2 & l^2 & \\ k & -3.4142135623730950488 \cdot k & 3.8284271247461900976 \cdot k \\ l^2 & l^2 & l^2 & \\ \end{bmatrix} \begin{bmatrix} \mathcal{E}_f \\ \mathcal{E}_2 \\ \mathcal{E}_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} / 1 + 14 = \begin{bmatrix} 0.7 \\ 1 \\ 0.7 \end{bmatrix}$$

Shah.fi

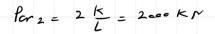
$$\frac{A\left(D(k,l)_{0},k,l\right)\cdot l^{2}}{k} \to \begin{bmatrix} 1.0 & -2.0 & 1.0 \\ -2.0 & 2.0 & -2.0 \\ 1.0 & -2.0 & 1.0 \end{bmatrix}$$

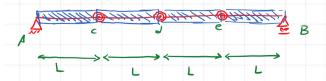
$$\delta_{1} = 1 \implies \delta_{1} - 2 \delta_{2} + \delta_{3} = 0$$

$$\int -2 \delta_{2} + \delta_{3} = -1$$

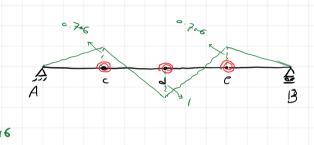
$$\begin{cases} -2\delta_2 + \delta_3 = -1 \\ +2\delta_2 - 2\delta_3 = 2 \end{cases}$$

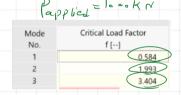
$$\frac{A\left(D(k,l)_{_{1}},k,l\right) \cdot l^{2}}{k} \xrightarrow{float,3} \begin{bmatrix} -1.83 & -0.586 & 1.0 \\ -0.586 & -0.828 & -0.586 \\ 1.0 & -0.586 & -1.83 \end{bmatrix}$$


$$-(.838_{-0}.5868_{2}+8_{3}=0)$$


$$-0.5868_{1}-0.8288_{2}-0.5868_{3}=0$$

$$\delta_{1}=1 \implies \begin{cases} \delta_{2}=-1.416 \\ \delta_{3}=1 \end{cases}$$


K = 2000 KN·m, L = 2m


Peri	_	0.5	858	K	=	0.58	58 x	2	KN.m.	_ 585-8	kγ
, , ,				L						= '	

Shah.fi

		Profile di			Area pro			
			mensions					
Profile D	Ext. Diamete D [mm]		Wall thickness t [mm]	Weight External m perimeter P [kg/m] [m]		Area A [mm²]	Shear area A _v [mm²]	Second moment o area I [×10 ⁶ mm ⁴
CHS 88.9 / 6.3	<u>dxf</u>	88.9	6.3	12.8	0.279	1635	1041	1.402
		Profile dimensions Area properties						
Profile D	rawing	Ext. Diameter D [mm]	Wall thickness t [mm]	Weight m [kg/m]	External perimeter P [m]	Area A [mm²]	Shear area A _v [mm ²]	Second moment of area [×10 ⁶ mm ⁴]
CHS 139.7 / 6.3	<u>dxf</u>	139.7	6.3	20.7	0.439	2640	1681	5.886
		Profile dir	mensions	Area properties				
Profile Di	rawing	Ext. Diameter D [mm]	Wall thickness t [mm]	Weight m [kg/m]	External perimeter P [m]	Area A [mm²]	Shear area A _v [mm²]	Second moment of area I [×10 ⁶ mm ⁴]
CHS 168.3 / 10	<u>dxf</u>	168.3	10.0	39.0	0.529	4973	3166	15.64

Leff=	- ZM		
Par=	K = I =	726	KN